Rough Sets and Rule Induction in Imperfect Information Systems
نویسندگان
چکیده
The original rough set theory deals with precise and complete data, while real applications frequently contain imperfect information. A typical imperfect data studied in rough set research is the missing values. Though there are many ideas proposed to solve the issue in the literature, the paper adopts a probabilistic approach, because it can incorporate other types of imperfect data including imprecise and uncertain values in a single approach. The paper first discusses probabilities of attribute values assuming different type of attributes in real applications, and proposes a generalized method of probability of matching. This probability is then used to define valued tolerance/similarity relations and to develop new rough set models based on the valued tolerance/similarity relations. An algorithm for deriving decision rules based on the rough set models is also studied and proposed.
منابع مشابه
Hybridization of Rough Sets and Statistical Learning Theory
In this paper we propose the hybridization of the rough set concepts and statistical learning theory. We introduce new estimators for rule accuracy and coverage, which base on the assumptions of the statistical learning theory. These estimators allow us to select rules describing statistically significant dependencies in data. Then we construct classifier which uses these estimators for rule in...
متن کاملProbabilistic approaches to rough sets
This paper reviews probabilistic approaches to rough sets in granulation, approximation, and rule induction. The Shannon entropy function is used to quantitatively characterize partitions of a universe. Both algebraic and probabilistic rough set approximations are studied. The probabilistic approximations are defined in a decision-theoretic framework. The problem of rule induction, a major appl...
متن کاملA New Approach for Knowledge Based Systems Reduction using Rough Sets Theory (RESEARCH NOTE)
Problem of knowledge analysis for decision support system is the most difficult task of information systems. This paper presents a new approach based on notions of mathematical theory of Rough Sets to solve this problem. Using these concepts a systematic approach has been developed to reduce the size of decision database and extract reduced rules set from vague and uncertain data. The method ha...
متن کاملCovering Numbers in Covering-Based Rough Sets
Rough set theory provides a systematic way for rule extraction, attribute reduction and knowledge classification in information systems. Some measurements are important in rough sets. For example, information entropy, knowledge dependency are useful in attribute reduction algorithms. This paper proposes the concepts of the lower and upper covering numbers to establish measurements in covering-b...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کامل