Rough Sets and Rule Induction in Imperfect Information Systems

نویسندگان

  • Do Van Nguyen
  • Koichi Yamada
  • Muneyuki Unehara
چکیده

The original rough set theory deals with precise and complete data, while real applications frequently contain imperfect information. A typical imperfect data studied in rough set research is the missing values. Though there are many ideas proposed to solve the issue in the literature, the paper adopts a probabilistic approach, because it can incorporate other types of imperfect data including imprecise and uncertain values in a single approach. The paper first discusses probabilities of attribute values assuming different type of attributes in real applications, and proposes a generalized method of probability of matching. This probability is then used to define valued tolerance/similarity relations and to develop new rough set models based on the valued tolerance/similarity relations. An algorithm for deriving decision rules based on the rough set models is also studied and proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization of Rough Sets and Statistical Learning Theory

In this paper we propose the hybridization of the rough set concepts and statistical learning theory. We introduce new estimators for rule accuracy and coverage, which base on the assumptions of the statistical learning theory. These estimators allow us to select rules describing statistically significant dependencies in data. Then we construct classifier which uses these estimators for rule in...

متن کامل

Probabilistic approaches to rough sets

This paper reviews probabilistic approaches to rough sets in granulation, approximation, and rule induction. The Shannon entropy function is used to quantitatively characterize partitions of a universe. Both algebraic and probabilistic rough set approximations are studied. The probabilistic approximations are defined in a decision-theoretic framework. The problem of rule induction, a major appl...

متن کامل

A New Approach for Knowledge Based Systems Reduction using Rough Sets Theory (RESEARCH NOTE)

Problem of knowledge analysis for decision support system is the most difficult task of information systems. This paper presents a new approach based on notions of mathematical theory of Rough Sets to solve this problem. Using these concepts a systematic approach has been developed to reduce the size of decision database and extract reduced rules set from vague and uncertain data. The method ha...

متن کامل

Covering Numbers in Covering-Based Rough Sets

Rough set theory provides a systematic way for rule extraction, attribute reduction and knowledge classification in information systems. Some measurements are important in rough sets. For example, information entropy, knowledge dependency are useful in attribute reduction algorithms. This paper proposes the concepts of the lower and upper covering numbers to establish measurements in covering-b...

متن کامل

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014